
1

Software Communications Architecture (SCA)

and

Rapid Application Development

Presented by:

Steve Bernier and Hugues Latour

Communications Research Centre Canada

November 5, 2007

2

• SCA Overview

• SCA and Component-Based Design (CBD)

• Rapid Application Development (RAD)

• SCA Architect ™ RAD Features

• Summary

Outline

3

• SCA Overview

• SCA and Component-Based Design (CBD)

• Rapid Application Development (RAD)

• SCA Architect ™ RAD Features

• Summary

Outline

4

SCA Overview

The SCA was created for the US DoD Joint Tactical Radio

System (JTRS) program

– Created by the Modular Software–programmable Radio Consortium

(MSRC): Raytheon, BAE Systems, Rockwell Collins, and ITT

– Assisted by the Communications Research Centre of Canada

The goal of the SCA is to facilitate the reuse of waveform

applications across different radio sets

– Technology insertion and capability upgrades

The SCA defines a central piece of software that acts as the

“SDR operating system”

– SCA Core Framework

5

SCA Overview

The SCA is independent of the application

domain

Different applications are supported by

domain–specific APIs

Base Station

APIs
Automotive

APIs

JTRS

Waveform

Applications

JTRS APIs

SCA Core Framework

6

• SCA Overview

• SCA and Component-Based Design (CBD)

• Rapid Application Development (RAD)

• SCA Architect ™ RAD Features

• Summary

Outline

7

SCA – Component-Based Design – A Different Perspective

The SCA is a Component-Based Design (CBD) architecture

What is Component-Based Development ?

– Definition: an architecture which allows the creation, integration, and re–
use of software components

– CBD is a development paradigm where the smallest unit of software is a
component

– Using CBD, an application is „assembled‟ using software components
much like a board is populated with hardware components

Characteristics of a Software Component:

– A small, reusable module of binary code that performs a well–defined
function (i.e. a black–box)

– Designed, implemented, and tested as a unit before it is used in an
application

8

SCA – Component-Based Design

CBD promotes the COTS culture and is enabling the

industrialization of software

The goal is to use the hardware development paradigm for

software:

– Purchase software components from a catalog

• Describe how to influence behavior (config properties)

• Describe how to interface (ports)

• Describe resource consumption (capacity properties)

• Describe resource requirements (capability properties)

CBD is currently the most popular programming paradigm:

– Microsoft‟s CBD is the “.NET” framework

– Sun Microsystem‟s CBD is the “EJB” framework

– OMG‟s CBD is the “CCM” framework

9

SCA – Component-Based Design

How do we build hardware ?

10

To connect hardware components, appropriate connectors

must be used:

outputinput

SCA – Component-Based Design

11

Definitions; Back to the small board...

SCA – Component-Based Design

Components Assembly

Port

12

Software equivalent of the small board:

SCA – Component-Based Design

Components

Assembly

Ports
SCA Architect ™

13

With the SCA, there are two types of constructs:

1. Components:

– Some SCA components are provided with SCA Core Framework

product

• Ex: DomainManager, DeviceManager, Log service, File, FileSystem,

FileManager, Event channels, etc.

– Other components are created by platform providers and application

developers

• Ex: Resource, ResourceFactory, Device, LoadableDevice,

ExecutableDevice, etc.

SCA – Component-Based Design

2. Assemblies:

– Defined as a collection of application or node components

14

SCA – Component-Based Design

SCA components are described by 3 kinds of modeling elements:

1. Ports: used to get data to/from a component

2. Properties: used to alter the behaviour of a component

3. Implementations: used to describe which operating environments a

component supports

15

SCA – Component-Based Design

SCA applications are described by 2 kinds of modeling elements:

1. Component Instantiations: which components are part of the application

2. Connections: how instantiations are interconnected

16

• SCA Overview

• SCA and Component-Based Design (CBD)

• Rapid Application Development (RAD)

• SCA Architect ™ RAD Features

• Summary

Outline

17

Rapid Application Development

What is Rapid Application Development (RAD) ?

– Development process invented by James Martin in the 1980s

– Involves iterative development and use some form of Model Driven

Development (MDD) tool

Rapid means Fast!

– The RAD process is optimized for speed and relies on two key

concepts: Prototyping and Iteration

– Prototyping: creating a demonstrable result as early as possible

– Iteration: commitment to incremental development based on refinement

– Prototyping and Iteration go hand–in–hand

18

Rapid Application Development

Advantages of Rapid Application Development:

– Clarity/precision: Development starts at a higher level of abstraction

– Portability: High–level abstractions are translated into platform

specific artifacts

– Early visibility: Can quickly create prototypes

– Greater flexibility: Developers can redesign almost at will

– Fewer defects: Because of modeling wizards and model translation

which greatly reduce manual coding

– Reduced cost: Shorter development cycles, time is money!

19

Rapid Application Development

RAD requires specialized tools that provide:

– Graphical development/modeling: to support a high level of abstraction

– Creation of working prototypes: for early visibility and greater

flexibility

– Multiple operating environments: to support portability and greater

flexibility

– Teamwork/collaboration and version control : because of early

visibility and greater flexibility

– Reusable artifacts: to support shorter development cycles and reduced

cost

20

Rapid Application Development

Concept of graphical development also known as Model–

Driven Development (MDD):

21

Rapid Application Development

The development of a SCA assemblies is achieved by

assembling a number of components together:

22

Rapid Application Development

Development of a SCA applications can be performed using an

iterative process

Iterative refinement happens at two levels :

1. Component level example:

– Create a component with two ports and a couple of properties

– Successively refine by adding business logic, ports and/or properties

2. Assembly level example:

– Create an application made of a few components

– Successively refine by adding more components, connections

– Can also refine by requesting that some components be collocated or by

overriding default values for component properties

23

Rapid Application Development

Typical iterations for development of a component :

Model Component1Generate and Build Component1

Test Component1

Add Input port to Component1

Add property to Component1Generate , Specialize, Build Component1

Test and

Evaluate

Understand

Requirements

Design the

System
Build

Iteratively

Final Product

Release

Start here

24

Rapid Application Development

Graphical view of the refinement process for a component:

25

Typical iterations for development of an assembly:

Rapid Application Development

Test and

Evaluate

Understand

Requirements

Design the

System
Build

Iteratively

Final Product

Release

Start here

Model Application1Generate and Package Application1

Deploy and Run Application1

Add Component4, connections

Change default value for a

property of Component2
Generate and Package Application1

26

Rapid Application Development

Graphical view of the refinement process for an assembly:

27

Rapid Application Development

The refinement process actually happens at both the component

and assembly level simultaneously:

– Create Component1 with two ports and a couple of properties

– Create Application1 which includes Component1

– Deploy and run Application1

– Refine Component1 by adding business logic, ports, properties

– Refine the Application1 by adding more components, connections

– Deploy and run new revision of Application1

– Refine Application1a by collocating some components

– Refine Application1a by overriding default values for component

properties

– Deploy and run Application1b

– Etc.

28

Rapid Application Development

RAD tools must support short cycles to promote refinement:

– Must be very simple to successively refine a model

– Must be easy to translate models into source code

– Translation must be flexible and generate as much functionality as possible

Generate

Source Code

Add Business

Logic

Modified

Source Code

Deploy and

RunIntegrate

Feedback

Model

29

• SCA Overview

• SCA and Component-Based Design (CBD)

• Rapid Application Development (RAD)

• SCA Architect ™ RAD Features

• Summary

Outline

30

SCA Architect™ Overview

CRC’s SCA modeling tool: SCA Architect™

31

SCA Architect™ Overview

SCA Architect™ main characteristics:

– Eclipse–based:

• Platform independence, easy integration with third party tools, wealth of free

plug–ins, etc.

– Supports modeling of every SCA concept graphically

• Application assemblies: Resource instantiations , ResourceFactory, all types of

connections, host–collocation, etc.

• Node assemblies: Device instantiations, Device aggregations, use device

relationships, all types of connections, etc.

– Translates models into source code, build files, documentation, etc.

– Supports multiple target Operating Environments (OEs)

– Provides real–time validation of models

– Provides reverse–engineering of SCA domain profile files

– Enables configuration management

– Etc.

32

SCA Architect™ RAD Features

Most importantly, SCA Architect™ is a RAD tool:

– Already supports several RAD features both at the component and at the

assembly level

Component–level RAD features:

1. Flexible and Comprehensive Code Generation

2. Zero–Merge Code Generation

3. Model Refactoring

4. Quick–fixes

Assembly–level RAD features:

1. AssemblyController Modeling and Code Generation

2. ResourceFactory Modeling and Code Generation

33

SCA Architect™ – Component-Level RAD Features

1. Flexible and Comprehensive Code Generation:

a. Generates a fully functional component out of the box

b. Provides a Framework to handle component properties:

• Type, Range and Enumeration validations are taken care of automatically

• Transparently handles SCA requirements:

– Raises proper exceptions when validation problems occur

– Supports empty queries

• Abstract CORBA intricacies

– Querying a property is mapped to a C++ getter

– Changing a property is mapped to a C++ setter

– „struct‟ type of property is mapped to a C++ structure

– „structsequence‟ type of property is mapped to a C++ array of structures

34

SCA Architect™ – Component-Level RAD Features

1. Flexible and Comprehensive Code Generation (cont):

c. Provides a framework to handle capacity properties:

• Allocation and deallocation of capacity is automatically handled

• Required Device state management is also automatically handled

– 21 states and close to 70 transitions
Legend:

Operational State: E = ENABLED, D = DISABLED
Admin State: U = UNLOCKED, L = LOCKED, SD = SHUTTING DOWN, LKG=LOCKING
Usage State: I = IDLE, A = ACTIVE, B = BUSY

lock = adminState(LOCKED)
unlock = adminState(UNLOCKED)

enable = set the operationalState at ENABLED
disable = set the operationalState at DISABLED

[de]allocate - all = [de]allocation of the remaining capacity
[de]allocate - partiall = [de]allocation of a portion of the remaining capacity

E, U, I

E, U, A

E, U , B

E, SD, IE, LKG, I

E, SD, AE, LKG, A

E, SD, BE, LKG, B

E, L, I

upon startup

no children

E, L, A

E, L, B

D, L, I

unload
terminate
deallocate

unload
load

execute
terminate
deallocate

unload
terminate
deallocate

D, L, A

D, L, B

D, LKG, I

D, LKG, B

D, LKG, A

enable

enable

enable

enable

deallocate all

allocate all

releaseObject

lock

unload
load

execute
terminate

deallocate partial

D, U, I

D, U, A

D, U, B

allocate all

releaseObject

lock

allocate partial

disable

disable

enable

enable

D, SD, I D, SD, A D, SD, B

enable

enable
enable

deallocate all
with children

deallocate partial

deallocate all
no children

unload
terminate
deallocate

deallocate all

deallocate partial

releaseObject

lock

unload
load

execute
terminate

disable

unload
terminate
deallocate

unlock

disable

deallocate partial

deallocate all

unload
terminate

releaseObject

deallocate all and
its devices adminState != LOCKED

deallocate partial

unlock

its devices adminState = LOCKED

unload
terminate

disable

releaseObject

deallocate all and
its devices adminState != LOCKED

unlockits devices adminState = LOCKED

unload
terminate

deallocate partial

disable

releaseObject

unlockdisable

deallocate all

unload
terminate

deallocate partial

releaseObject

its devices adminState = LOCKED unlock

disable

releaseObject

unlock

disable

releaseObject

deallocate all
with children

deallocate all
no children

unload
terminate
deallocate

As described in our change proposal, these states are undesirable
and should not be permitted

35

SCA Architect™ – Component-Level RAD Features

1. Flexible and Comprehensive Code Generation (cont):

d. Provides a Framework to route packets from input ports to output ports:

• Connection handling is done automatically

• Data processing is controlled via the component start/stop

• Data processing simply requires the implementation of one method

– Default behavior is “pass through”

Resource Resource

point to point point to multi–point

36

SCA Architect™ – Component-Level RAD Features

1. Flexible and Comprehensive Code Generation (cont):

e. Provides the option of generating a thread to pump data out:

• Thread processing is controlled via the component start/stop

• Data acquisition simply requires the implementation of one method

AudioDevice

37

SCA Architect™ – Component-Level RAD Features

2. Zero–Merge Code Generation:

a. Supports iterative refinement without any merge tool

b. Merging source code is very error prone and cumbersome

Refined Model

Generated

Source Code

Modified

Source

Code
Previously Modified

Source Code

Merge

Source Code

Add Business

Logic

Merged

Source Code

38

SCA Architect™ – Component-Level RAD Features

2. Zero–Merge Code Generation (cont):

c. Is achieved by keeping the business logic separate from the model

generated code

d. Base Code: Generated from the model

e. Business Logic: Specializes the base code

Business Logic

Model

Generated CodeBase Code

Specialized Code

39

SCA Architect™ – Component-Level RAD Features

2. Zero–Merge Code Generation (cont):

f. Model can be refined several ways without requiring a merge:

• Can add/remove a property

• Can edit a property to add/remove/change range or enumeration validations

• Can add/remove a port

• Can add/remove fields to a property of type structure

• Generated code can always be specialized

40

SCA Architect™ – Component-Level RAD Features

3. Model Refactoring:

a. Model can be refactored comprehensively:

• The model of a Property being used by several components can be changed

across a whole project

• The same is true for Ports and Components

4. Quick Fixes:

a. After reverse–engineering SCA domain profile files, validation may

produce several errors and warnings

b. Fixing errors/warning manually can be very tedious

c. SCA Architect offers an automated way of fixing problems:

• Don‟t have to edit a form to repair the problem; choose from alternatives fixes

• Can apply the same fix to all similar problems

41

SCA Architect™ – Assembly-Level RAD Features

1. AssemblyController (AC) Modeling and Code Generation

a. Using a wizard, SCA Architect™ can generate an AC model from an

application assembly model:

• Specify which component needs to be controlled

• Specify which port / property needs to be exported

b. Code generation of an AC creates proxy ports and proxy properties

c. The AC is the main component of an application assembly

d. The AC is generally connected to every component of an application

assembly in order to control them

e. Every time a new component is added in the application assembly, the AC

must be changed. The same is true when a new property/port needs to be

made external

f. Maintaining an AC can quickly become a nightmare

42

SCA Architect™ – Assembly-Level RAD Features

2. ResourceFactory Modeling and Code Generation

a. Using a wizard, SCA Architect™ can generate a ResourceFactory model

from a list of application components:

• Specify which component needs to be deployed by the ResourceFactory

• Doesn‟t require a single line code to be changed in the Resources

b. Can be used to optimize footprint and performance of several application

components

Resource Server

Resource

Implementation

Standalone Resource

ResFact Server

Resource Factory Implementation

Resource

Implementation

Resource

Implementation

Several Resources Combined

43

• SCA Overview

• SCA and Component-Based Design (CBD)

• Rapid Application Development (RAD)

• SCA Architect ™ RAD Features

• Summary

Outline

44

Summary

The SCA is a Component-Based Design architecture

Components

Assembly

Ports
SCA Architect ™

45

Summary

Without any API supplement, the SCA is not radio nor military

specific

Base Station

APIs
Automotive

APIs

JTRS

Waveform

Applications

JTRS APIs

SCA Core Framework

46

Summary

Using a RAD tool can definitely make it easier to use the SCA

Model Component1Generate and Build Component1

Test Component1

Add Input port to Component1

Add CodeRate property to Component1Generate , Specialize, Build Component1

Test and

Evaluate

Understand

Requirements

Design the

System
Build

Iteratively

Final Product

Release

Start here

47

Business: jeet.hothi@crc.ca

Technical: steve.bernier@crc.ca

Web Sites: http://www.crc.ca/rars

http://www.crc.ca/scari

Questions ?

